Ameloblastoma Treatment and Reconstruction
Ease of drilling sequence – Minimized drill sequence (2~4 drills) allows precision of osteotomy site preparation and less chair time for both dental surgeons and patients.

Color coding – Implant vials and drills are color coded to eliminate confusion.

Wide selections – Wide selection of implant sizes and prosthetic options are available to meet the needs of all dental surgeons.
NEW Oralife Plus Combination Allograft available now!

Oralife is a single donor grafting product processed in accordance with AATB standards as well as state and federal regulations (FDA and the states of Florida, California, Maryland and New York). Oralife allografts are processed by LifeLink Tissue Bank and distributed by Exactech Inc.

1. Data on file at Exactech.
Blue Sky Bio, LLC is a FDA registered U.S. manufacturer of quality implants and not affiliated with Nobel Biocare, Straumann AG or Zimmer Dental. SynOcta® is a registered trademark of Straumann AG. NobelReplace® is a registered trademark of Nobel Biocare. Tapered Screw Vent® is a registered trademark of Zimmer Dental.

*activFluor® surface has a modified topography for bone apposition on the implant surface without additional chemical activity.

**U.S. and Canada. Minimum purchase requirement for some countries.

Order online at www.blueskybio.com

Blue Sky Bio, LLC is a FDA registered U.S. manufacturer of quality implants and not affiliated with Nobel Biocare, Straumann AG or Zimmer Dental. SynOcta® is a registered trademark of Straumann AG. NobelReplace® is a registered trademark of Nobel Biocare. Tapered Screw Vent® is a registered trademark of Zimmer Dental.
Table of Contents

11 Odontogenic Tumor: A Case Report of a multicystic ameloblastoma in mandible treated with intraoral bone graft surgery and osseointegrated implants
Luis Eduardo Benevides de Moraes, Eduardo Jose de Moraes, Nathalia Benevides de Moraes

21 Improving Peri-implant Soft Tissue Profiles Using a Novel Immediate Provisionalization and Flapless Implant Placement Technique: Case Presentation
Mohamad Koutrach, Bassam M. Kinaia, Harold E. Goodis
PIEZOTOME2 and IMPLANT CENTER2
- Three times more power than PIEZOTOME1!
 (60 watts vs 18 watts of output power in the handpiece)
- Procedures are faster than ever, giving you a clean and effortless cut
- NEWTRON LED and PIEZOTOME2 LED Handpieces output 100,000 LUX!
- Extremely precise irrigation flow to avoid any risk of bone necrosis
- Selective cut: respect of soft tissue (nerves, membranes, arteries)
- Less traumatic treatment: reduces bone loss and less bleeding
- 1st EVER Autoclavable LED Surgical Ultrasonic Handpieces
- Giant user-friendly 5.7” color touch-control screen
- Ultra-sharp, robust and resistant tips
 (30+ Surgical & 80+ Conventional)

All the benefits of the PIEZOTOME2...PLUS...
- I-Surge Implant Motor (Contra-Angles not included)
- Compatible with all electric contra-angles (any ratio)
- Highest torque of any micro-motor on the market
- Widest speed range on the market
Table of Contents

31 Using Bone Expanders and Piezoelectric Surgery for Ridge Expansion to Facilitate Immediate Dental Implant Placement: Case Reports
Dr. Shady A. M. Negm, Dr. Ahmed H. Ayoub

41 Substance Abuse & Misuse of Prescription Drugs for Temporomandibular Disorders
Paul J. Flaer, Jai Parkash, Saif Algarugly, Seng Kyu Choi
SuperLine
Submerged type with tapered body for immediate loading

SimpleLine II
Transgingiva type 1 stage system

Slim Onebody
One body implant for overdenture or provisional

All with S.L.A. surface treatment for successful osseointegration with proven record
Introducing

Mucograft®
collagen matrix

Mucograft® is a pure and highly biocompatible porcine collagen matrix. The spongious nature of Mucograft® favors early vascularization and integration of the soft tissues. It degrades naturally, without device related inflammation for optimal soft tissue regeneration. Mucograft® collagen matrix provides many clinical benefits:

For your patients...

- Patients treated with Mucograft® require 5x less Ibuprofen than those treated with a connective tissue graft¹
- Patients treated with Mucograft® are equally satisfied with esthetic outcomes when compared to connective tissue grafts²

For you...

- Surgical procedures with Mucograft® are 16 minutes shorter in duration on average when compared to those involving connective tissue grafts¹
- Mucograft® is an effective alternative to autologous grafts³, is ready to use and does not require several minutes of washing prior to surgery

Ask about our limited time, introductory special!

Mucograft® is indicated for guided tissue regeneration procedures in periodontal and recession defects, alveolar ridge reconstruction for prosthetic treatment, localized ridge augmentation for later implantation and covering of implants placed in immediate or delayed extraction sockets. For full prescribing information, visit www.osteohealth.com

For full prescribing information, please visit us online at www.osteohealth.com or call 1-800-874-2334.
Mucograft® is indicated for guided tissue regeneration procedures in periodontal and recession defects, alveolar ridge reconstruction for prosthetic treatment, localized ridge augmentation, and delayed extraction sockets. It is a pure and highly biocompatible porcine collagen matrix that provides many clinical benefits:

- Less surgery duration on average when compared to connective tissue grafts.
- Ready to use and does not require several minutes of washing.
- Surgical procedures with Mucograft® are 16 minutes shorter in duration on average when compared to those involving connective tissue grafts.
- Mucograft® collagen matrix provides many outcomes when compared to connective tissue grafts.
- Mucograft® is an effective alternative to autologous grafts.
- Patients treated with Mucograft® require 5x less Ibuprofen than those treated with a connective tissue graft.

For additional information, please visit our website or call 1-800-874-2334.

References:

Mucograft® is a registered trademark of Ed. Geistlich.
DID YOU KNOW?
Roxolid implants deliver more treatment options

Roxolid is optimal for treatment of narrow interdental spaces.

Contact Straumann Customer Service at 800/448 8168 to learn more about Roxolid or to locate a representative in your area.

www.straumann.us

Case courtesy of Dr. Mariano Polack and Dr. Joseph Arzador, Gainesville, VA
The ameloblastoma is an invasive odontogenic tumor with benign character and might promote bony destruction. A large number of approaches are preconized such as aggressive resections with safety margin which lead to functional and esthetical sequelae. The present article consists in a case report of a 24 years old female patient presenting a multicystic ameloblastoma in the anterior region of the mandible. The patient was submitted to a conservative resection followed by bony reconstruction with autogenous bone graft taken from the retromolar region associated to PRP (platelet-rich plasma). After satisfactory remodeling of the graft, osseointegrated implants were installed and the patient was rehabilitated with a fixed prosthesis. Patient was followed for a period of 5 years showing no signs of recurrence. It is possible to conclude that the treatment performed in this case provided lower morbidity and was able to satisfy patient’s expectations.

KEY WORDS: Bone graft, dental implants, odontogenic tumor, multicystic ameloblastoma

1. Residente em Cirurgia Bucomaxilofacial, HNMD-RJ; Aluno do Curso de Especialização em Implantodontia, Unifeso, Teresópolis/RJ.
2. Professor coordenador do Curso de Especialização em Implantodontia, Unifeso, Teresópolis/RJ.
3. Especialista em Prótese Dental e aluna do Curso de Especialização em Implantodontia, Unifeso, Teresópolis/RJ.
BACKGROUND

Ameloblastoma is an odontogenic epithelial tumor that accounts for approximately 10% of odontogenic tumors and 1% of all tumors and cysts of the jaws.\(^1\) It is a locally aggressive tumor with benign character, leading to bony destruction and facial deformities. Treatment modalities have been extensively discussed in the literature and are still a focus of controversy, varying from a simple surgical excision till big resections with safety margins.\(^2\) It is classified in 3 principal subtypes according to its clinical and radiographic conditions. The literature has divided clinical ameloblastomas into Unicystic, Multicystic and Peripheral subtypes.\(^2,3\) The prognosis of lesion as well as its treatment seems to be intimately related to the clinical and radiographic subtype and its confirmation by histopathological exam. The surgeon has at his disposal radical techniques for treatment of odontogenic tumors, however large resections can often create sequelae, because the bony destruction and the radical eradication of this pathology interferes with the prosthetic rehabilitation and with psychological aspects of the patient. Some authors have shown that the bony reconstruction techniques play an important role in creating ideal conditions for the installation of osseointegrated implants followed by a prosthetic rehabilitation.\(^4,5\) The present article consists in a case report of a patient with a mandibular ameloblastoma who was submitted to a bony reconstruction with autogenous bone graft after tumor resection and rehabilitated with osseointegrated implants.

![Figure 1: Preoperative Panoramic Xray](image)

![Figure 2: Preoperative CT occlusal view.](image)

![Figure 3: Preoperative CT.](image)
CASE REPORT

A 24-year-old woman presented for treatment with a slight swelling in the anterior region of the mandible, more specifically in the region of teeth (FDI numbering system) 31, 32, 33 and 34. In the radiography, a multiloculated radiolucent image similar to a multicystic ameloblastoma could be observed (Fig 1). In the CT scan, swelling of the lingual and buccal cortical could be noticed as a consequence of expansion of the lesion (Figs 2 and 3). The patient was very nervous and depressed with the situation because she had already presented to other dentists that proposed radical treatments. In the histopathologic study, the presence of islands of epithelium similar to the epithelium of the
enamel organ in a stromal of mature fibrous connective tissue confirmed the diagnosis (Fig 4).

Under general anesthesia, an intra sulcular incision with margins designed for a better visualization of the lesion followed by buccal and lingual detachment and exodontia of elements 31, 32, 33 and 34 that were associated to the lesion were performed (Fig 5 and 6). A segmental resection with removal of the buccal bone plate was executed, followed by osteotomy with round burs in the lingual bone plate (Fig 7). The resection was then extended...
and two teeth adjacent to the lesion were removed, elements 41 and 35. The left retro-molar region was accessed for the removal of the autogenous bone blocks which were fixed with titanium micro screws of 1.5 mm of diameter and 12 mm of length, associated to particulate bone graft mixed with platelet-rich plasma (PRP) in order to fill the gaps (Figs 8 and 9). The final suture was performed with non-resorbable material (mononylon 5-0; Johnson&Johnson/Ethicon-Somerville, NJ). During the postoperative period, antibiotic
prescription (Cephalosporin 1g 4 times per day 6/6 hours for 7 days) was made, (Tenoxicam 20mg 2 times per day 12/12 hours for 3 days) and chemical control of biofilm (Chlorexidine 0,12% rinses 4 times per day). The suture was removed after 1 week and the patient was followed up monthly during 6 months.

After a period of 6 months, another surgery was performed for implants placement. The same surgical approach used in the first surgery was then performed and satisfactory incorporation of the graft to the recipient site could be observed, with clinical signs of bony remodeling (Fig 10). The micro screws were removed and four osseointegrated implants with dimensions of 3,75 x 13mm (Conexão Sistema de Prótese – São Paulo - Brazil) were installed (Fig 11 and 12). The same pharmacological protocol and period of follow up in the first surgery was performed. After another period of 6 months, the implants were exposed with subsequent prostheses installation. The patient has been benefitted with esthetical and functional gains, demonstrating satisfaction with the results (Fig 13).

The patient was followed up during a period of 5 years and presented healthy conditions of the bone, without presence of signs of recurrence. Imaging periodical exams were performed during 5 years after prosthetic rehabilitation and healthy bone was identified, without images associated to pathologies. The prosthesis was periodically removed and implants were examined, without evidence of bone loss and mobility.

DISCUSSION
The multicystic ameloblastoma has a more aggressive and invasive biological behavior being generally recommended radical approaches for treatment. Classically, a block resection of the lesion between 1 and 2 cm of safety margins is preconized. This technique is preferred because ameloblastoma cells can be found up to 8 mm from the radiographic and clinical margins of the lesion. Di Cosola et al confirmed in their study that unicystic ameloblastomas seems to have recurrence potential but lower when compared to the multicystic type. The authors consider the conservative approaches such as the enucleation and curettage or the association of both good options for treatment, having a significant rate of success.

Many techniques are proposed for the treatment of ameloblastoma, but it is consensus that the main objective of therapeutics consists in the complete eradication of the lesion, eliminating recurrences and the necessity of other surgeries. Some authors preconizes a marginal resection with safety margins for cases in general of ameloblastoma, but recognizes that the treatment must be individualized for each patient and lesion, being this idea corroborated by Cury, Dib, Santos Pinto. For Nakamura et al. each case must be analyzed individually and in a meticulous way, priming for a conservative approach in situations which tumors are found in initial stages, even if it presents a higher risk of recurrence. This conduct is considered valid because chances of complications and sequelae are reduced. This point is maybe the most difficult and requires common sense by the professional concerning the treatment of aggressive lesions of the oral cavity. The idea of a radical approach wasn’t accepted well by the patient and its execution would lead to not only surgical sequelae.
but also in the decreasing of quality of life. Adjuvant techniques such as cryotherapy and Carnoy’s solution 10%, haven’t been utilized. Samman & Lee10 observed rates of recurrence of 10% with the utilization of Carnoy’s solution in unicus ameloblastomas. Cury et al.1 related in their study rates of recurrence of 30% in lesions treated with liquid nitrogen. Salmassy & Pogrel11 defend the utilization of cryotherapy in aggressive lesions of the jaws larger than 5 cm in its major diameter after resection in association to bone grafts in blocks. However, these techniques can’t be utilized indiscriminately. Some authors cited complications like paresthesia, lesion of surrounding tissues, postoperative wound dehiscence, pathologic fractures, pain, swelling and infection.1,2

On the other hand, autogenous bone is the most frequent type of graft used in oral and maxillofacial surgery and might be harvested from various parts of the body, such as: iliac crest, calvaria, ribs, body of the mandible (retro-molar region) and chin.4,6,12,13,14 Chiapasco et al4 demonstrated that osseointegrated implants can be utilized with success after large reconstructions with the utilization of autogenous bone grafts harvested from the ribs. Zachariades15 presented 4 cases of recurrences of ameloblastoma in bone grafts. The author confirmed that although recurrences of tumor in bone grafts may occur, these are not common, being related rarely in the literature.. Others authors5,14 concluded that the distraction osteogenesis promote efficiently vertical augmentations turning possible implants placement in patients presenting partial edentulism and mandibular defects after tumors resections. Mareque et al.6 presented the onlay bone graft from the iliac crest as an option in the reconstruction of defects after tumor resection for posterior implants placement and prosthetic rehabilitation. The literature13 consider the retro-molar region as an intraoral donor site because it allows the removal of good quantity of bone, enough for reconstruction of regular defects. This region is indicated as a donor site because it offers lower morbidity and more postoperative comfort for the patient13. In this case report, a conservative segmental resection was preferred, being complemented by osteotomy with round burs, providing lower morbidity and diminishing postoperative sequelae.

CONCLUSION

It is possible to conclude that a conservative treatment of aggressive lesion as the ameloblastoma using intra-oral autogenous bone graft for reconstruction permits implants placement with a good prosthetic rehabilitation. This treatment option is predictable and viable presenting good results and low morbidity.

Correspondence:

D Eduardo Jose de Moraes
edujm@uol.com.br
Disclosure

The authors report no conflicts of interest with anything reported in this article.

References

Introducing the 2nd Generation Placental Allograft from Snoasis Medical...

BioXclude™

Case Courtesy of Dan Holtzclaw, DDS, MS, Austin, TX

- BioXclude over grafted socket
- 2 weeks postoperative
- 5 months postoperative

Case Courtesy of Paul S. Rosen, DMD, MS, Yardley, PA

- Intrabony defect
- BioXclude placement
- 6 month postoperative radiograph

- Composed of immunoprivileged tissue
- Reduces inflammation at the wound site
- Minimal trimming needed; can be folded onto itself
- Tightly adapts over bone graft and proximal walls
- Does not need to be secured with sutures or tacks

Phone: 1-866-521-8247
Fax: 720-259-1405
Email: info@snoasilmedical.com
www.snoasilmedical.com
NobelActive™
A new direction for implants.

- Dual-function prosthetic connection
- Built-in platform shifting
- Bone-condensing property
- High initial stability, even in compromised bone situations
- Adjustable implant orientation for optimal final placement

NobelActive equally satisfies surgical and restorative clinical goals. NobelActive thread design progressively condenses bone with each turn during insertion, which is designed to enhance initial stability. The sharp apex and cutting blades allow surgical clinicians to adjust implant orientation for optimal positioning of the prosthetic connection. Restorative clinicians benefit by a versatile and secure internal conical prosthetic connection with built-in platform shifting upon which they can produce excellent esthetic results. Based on customer feedback and market demands for NobelActive, the product assortment has been expanded – dental professionals will now enjoy even greater flexibility in prosthetic and implant selection. Nobel Biocare is the world leader in innovative evidence-based dental solutions. For more information, contact a Nobel Biocare Representative at 800 322 5001 or visit our website.

www.nobelbiocare.com/nobelactive

© Nobel Biocare Services AG, 2011. All rights reserved.

Disclaimer: Some products may not be regulatory cleared/released for sale in all markets. Please contact the local Nobel Biocare sales office for current product assortment and availability. Nobel Biocare, the Nobel Biocare logotype and all other trademarks are, if nothing else is stated or is evident from the context in a certain case, trademarks of Nobel Biocare.
Improving Peri-implant Soft Tissue Profiles Using a Novel Immediate Provisionalization and Flapless Implant Placement Technique: Case Presentations

Mohamad Koutrach, DDS¹ • Bassam M. Kinaia, DDS, MS²
Harold E. Goodis DDS³

Abstract

Background: Achieving predictable esthetic results in the anterior maxilla are a challenge for clinicians mainly due to lack of adequate soft and hard tissues volume. To predictably obtain pleasing results, early soft tissue management is necessary especially during implant temporization period.

Methods: The current case presentations describe a novel immediate provisionalization and flapless implant placement approach by using a roughened cervical surface of the immediate provisional, and later a customized impression technique to optimize the peri-implant soft tissue profile.

Results: The results of this technique have shown excellent soft tissue health, appearance and stability. These results were satisfactory for both the patients and the clinicians.

Conclusion: The concept of a flapless implant placement in well-developed and healed site combined with an immediate provisionalization have shown very encouraging clinical results, however it is essential to validate these findings through a well-controlled clinical trial.

KEY WORDS: Dental implants, prosthodontics, provisionalization, case series

1. Clinical Associate Professor, Department of Prosthodontics, University of Texas Health Science Center at Houston, practice limited to Prosthodontics, Spring, TX, USA.
2. Associate Professor, Department of Periodontology and Dental Hygiene, University of Detroit Mercy – School of Dentistry, Detroit, MI, USA; Private practice limited to Periodontics, Sterling Heights, MI, USA.
3. Professor Emeritus, Department of Endodontics, The University of California School of Dentistry, San Francisco, CA, USA.
INTRODUCTION

The replacement of missing anterior teeth with dental implants is a well-documented treatment in the dental literature. However, achieving predictable esthetic results in the anterior maxilla is a challenge mainly due to lack of consistent soft and hard tissue healing patterns. In the past, implant placement with 3 - 6 months of healing time was desirable for the osseointegration process.¹ Today, there is an increased demand to reduce treatment time and minimize the number of surgical procedures. Therefore immediate implant placement and loading, especially in the anterior maxillary region, is used with successful outcomes.²⁻³ Flapless implant surgery is an effective treatment with minimal bleeding, postoperative discomfort⁴⁻⁸ and high implant survival rates of 91% to 98%.⁹⁻¹¹ Further, flapless implant placement in conjunction with immediate restoration aids in preserving the soft tissue and improve the esthetic outcome.¹²⁻¹³ The management of the soft tissue is essential to maximize the esthetic results during the osseointegration healing period.¹⁴ The current paper presents a novel technique to create an appropriate emergence profile around the immediate provisional implant crown. The technique depends on careful manipulation of the soft tissue by using a slightly roughened cervical third of the provisional crown leading to a slow, controlled gingival enlargement. The tissue is carefully monitored to ensure the development of an optimal emergence profile. Finally, a customized impression technique is used to accurately transfer the final tissue contour from the oral cavity to a laboratory working model to fabricate the definitive crown.¹⁵
Clinical Presentation
A 34-year old female patient presented with a missing maxillary left central incisor, the tooth was extracted four years ago due to a failed endodontic therapy and replaced with an interim maxillary partial removable denture prosthesis (RPD) (Figure 1). Clinical examination revealed a minor class I ridge deficiency\(^\text{16}\) with a thick periodontal biotype\(^\text{17}\) and high smile line\(^\text{18}\) (Figure 2). A bone-sounding technique showed insufficient bone in the buccopalatal direction and the periapical radiograph indicated approximately 13 mm of bone height.

Technique
The emergence profile of the future implant crown was initiated by de-epithelizing the soft tissue of the edentulous area using a round, coarse diamond bur (Figure 3). The tissue surface of the artificial tooth was modified from a ridge lap to an ovate shape contour using auto-polymerizing acrylic resin material (Jet acrylic, Lang Dental Mfg. Co., Wheeling, IL).\(^\text{21, 22}\) The new ovate shape artificial tooth helped to create an appropriate emergence profile for the future implant crown.\(^\text{23, 24}\)
Implant Placement with Immediate Provisionalization
The patient received antibiotics (Amoxicillin 500 mg, Teva Pharmaceuticals, Sellersville, Pennsylvania, USA) starting 24 hours before the procedure and for seven days after. Under local anesthesia and using the surgical guide, the sequential implant osteotomy was performed through the soft tissue without flap elevation and according to the implant surgical protocol; a 3.7 mm diameter and 11.5 mm length implant (Tapered Screw-Vent®, Zimmer Dental Inc., Carlsbad, California, USA) was inserted with primary stability at 40 Ncm (Figure 4). Immediately after the implant placement, an interim abutment was manually torqued to the implant, a provisional crown was fabricated with auto-polymerizing acrylic resin and modified to the proper contour. The facial surface was left slightly roughened at the cervical third to induce a controlled inflammatory process. The occlusion was adjusted to eliminate any centric or eccentric contacts, and the crown was cemented to the abutment using Temp-Bond (3M ESPE AG, Seefeld, Delaware, USA), the implant was allowed to heal for 4 months. During the osseointegration process, the roughened cervical third of the provisional crown was monitored and adjusted to obtain a favorable soft tissue profile (Figure 5).

The Definitive Restoration
After four months, the provisional crown and abutment were removed, the impression coping was connected to the implant, and flowable composite resin materials (Tetric Flow, Ivoclar Vivadent, Amherst, New York, USA) were injected around the impression coping and light cured (Figure 6). The composite resin helped supporting the soft tissue the contour. The impression was made using a polyvinylsiloxane material (Imprint II, 3M ESPE AG, Seefeld, Delaware, USA) and sent to the laboratory. A definitive custom abutment was fabricated and connected to the implant and torqued to 30 Ncm, and a definitive crown was also manufactured using all-Zirconia ceramic material (Procera, Nobel Biocare, Yorba Linda, California, USA) and cemented with resin cement (Variolink, Ivoclar Vivadent, Florida, USA).
low-up through 12 months showed stable results with firm periodontal tissues (Figure 7).

The second patient was a 46-year-old female presented with a missing maxillary left central incisor fourteen years ago due to a traumatic injury to the region. Seibert class I ridge deformity was present and thin periodontal biotype with a low smile line were evident (Figure 8). Treatment options were discussed and the patient agreed to have guided bone regeneration (GBR) to increase the labial-palatal ridge width followed by dental implant. The GBR procedure was completed using particulate freeze-dried cancellous bone allograft and a resorbable collagen membrane (Biomend Extend, Zimmer Dental, Carlsbad, CA) and the area allowed to heal for 6 months.

During the initial healing period, a space between the surgical site and the artificial tooth of the interim RPD was created to ensure an undisturbed healing process. The soft tissue of the edentulous space was developed for
Figure 10: Provisional crown with roughened cervical surface two month after flapless implant placement (notice the enlargement of the soft tissue)

Figure 11: 12 months follow up with adequate soft tissue stability around the implant crown.

Figure 12: Preoperative clinical and radiographic views of the fractured right central incisor
the future implant crown using the same technique described for the first patient (Figure 9). Ridge mapping was performed 6 months after healing and adequate bone width of 7 mm was present. A dual acid etched-surfaced root-form implant, 3.25 mm in diameter and 11.5 mm in length (OsseoTite NT, Biomet 3i, Palm Beach Gardens, Florida, USA) was inserted. The provisional abutment, the immediate provisional crown and the definitive restorations were fabricated with the same technique described for the first patient, with the crown left slightly rough at the cervical third. Soft tissue enlargement was observed during the healing period (6-8 weeks) (Figure 10). Clinically, the soft tissue appeared to be stable around the final crown at 12 months follow-up (Figure 11).

The third patient presented with an infected right maxillary central incisor and horizontal root fracture at the apical third (Figure 12). A socket preservation procedure was completed using particulate bone allograft and resorbable membrane after extracting the tooth. Using the same technique with the previous cases, an implant supported single tooth was placed and restored. The soft tissue contour appeared to be stable at 12 months after the definitive crown was cemented (Figure 13).

DISCUSSION

Patient Selection and Factors Affecting the Soft Tissues

In the current patient presentations, thick and thin periodontal biotypes were closely observed using novel flapless implant placement and immediate provisionalization techniques. The combination of flapless implant placement and an immediate provisionalization technique is proved to be helpful in the maintenance of a soft tissue profile around dental implants in
the esthetic zone. Surgical and restorative factors play a role in the development and maintenance of the soft tissue during the healing period around the immediate provisional. Surgically, adequate bone volume presence is important to reduce possibility of dehiscence that could lead to subsequent soft tissue recession. Further, the use of flapless implant surgery plays a significant role in preserving the soft tissue contour around implants. Restoratively, soft tissue development with immediate provisionalization is useful to improve the esthetic results. In the current patient presentations, the soft tissue was modified twice (during the interim removable dental prosthesis stage, and later during the osseointegration process) using a roughened immediate provisional to create a natural, harmonious tissue profile. The roughened cervical surface of the immediate provisional leads to inflammation that results in an enlarged thick granulation tissue formation; hence increases the soft tissue volume. Once the desired profile was achieved through the roughened surface, the provisional crown and abutment were removed and the impression was immediately made. Thus, the roughened surface improves the soft tissue and thereby achieving the desired esthetic results.

Many different techniques have been used for maintenance and formation of soft tissue profiles during the immediate provisionalization period. Lee et al. evaluated the gingival margin using a flapless implant surgical technique around 76 implants, taking dental casts at 1 week, 1 month, and 4 months after implant placement. The results demonstrated a better coronal growth of the gingival margin occurring at 1 week (0.7 +/- 0.3 mm) and 4 weeks (0.2 +/- 0.2 mm), with no change at 4 months (0.0 +/- 0.3 mm). Although flapless implants induced coronal growth of the gingival tissue at 1 and 4 weeks, it is the authors' opinion that the additional enlargement of the soft tissue through the controlled inflammation by roughening the cervical part of the immediate provisional during the initial 2 months of immediate provisionalization can further improve the esthetic results.

CONCLUSIONS
The current patient presentations describe a novel technique to optimize the soft tissue response during the osseointegration healing period. It combines a minimally invasive, flapless implant surgery with a unique concept of using controlled minimal inflammation to enlarge the soft tissue during the
first 2 months of healing. Later, the soft tissue profile is maintained using a customized impression technique. Overall, the technique demonstrated no adverse effects on clinical implant osseointegration and good periodontal health was observed in all the patients. To the author’s knowledge, the combination of the aforementioned techniques is a novel approach. Although the results in this report have been satisfactory, it is the authors’ opinion that it is essential to validate these findings through a well-controlled clinical trial.

Correspondence:
Dr. Mohamad Koutrach
Clinical Associate Professor
7500 Cambridge Street, Suite 5339
Houston, Texas 77054
USA
Phone: 1-832-468-6077
Fax: 1-713-486-4353
Email: mkoutrach@aol.com

Disclosure
The authors report no conflicts of interest with anything mentioned in this article.

References
The Tapered Plus implant system offers all the great benefits of BioHorizons highly successful Tapered Internal system PLUS it features a Laser-Lok treated beveled-collar for bone and soft tissue attachment and platform switching designed for increased soft tissue volume.

platform switching
Designed to increase soft tissue volume around the implant connection

Laser-Lok® zone
Creates a connective tissue seal and maintains crestal bone

optimized threadform
Buttress thread for primary stability and maximum bone compression

prosthetic indexing
Conical connection with internal hex; color-coded for easy identification

For more information, contact BioHorizons Customer Care: 1.888.246.8338 or shop online at www.biohorizons.com
Background: Narrow dentoalveolar ridges remain a serious challenge for the successful placement of endosseous implant. In this paper we describe a ridge splitting technique using bone expanders and piezoelectric surgery blades. The approach enables treatment of ridges as thin as 2.5 mm at the alveolar crest and simultaneous placement of dental implants. In two cases reported in this article the alveolar crest widths are less than 2.5 mm. We prefer to place implants immediately after the expansion rather than expansion and placing bone graft and waiting until healing completes. This technique is preferred because it accomplishes everything in a single visit.

Methods: Using the piezoelectric surgery and bone expanders technique, we split the atrophic alveolar ridge and immediately placed dental implants between the split ridge plates. The ridges were allowed to heal for 3 months prior to implant loading.

Results: Horizontal widths of the alveolar ridges were increased from 1.6 mm to 6 mm on average and no fractures of alveolar plates were encountered. After 3 months of healing, the expanded alveolar ridges appeared to heal with bone filling the piezoelectric splits and 100% survival of dental implants was seen 5 months after implant loading.

Conclusions: The preliminary results of this study indicate that ridge expansion alone or in combination with GBR can be considered an effective and safe procedure for treatment of width insufficiency of alveolar ridges on the purpose of implant application.

KEY WORDS: Dental implants, piezoelectric surgery, ridge splitting, guided bone regeneration

1. Instructor of Periodontology and Oral Medicine at Faculty of Dentistry, Pharos University in Alexandria
2. President of Egyptian Society of Oral Implantology
INTRODUCTION
Alveolar ridge atrophy is a serious problem that often limits the use of endosseous dental implants. When an anterior tooth in the mandible is lost, often as a result of trauma or endodontic complications, the labial wall of the alveolar socket resorbs rapidly and the residual ridge actually consists of the previous palatal wall. Therefore, the alveolar ridge is predominantly reduced in the horizontal dimension, and immediate implant placement with routine techniques is not possible because of the discrepancy between the thickness of the ridge and the diameter of the implant. Although numerous procedures have been devised to augment the alveolar crest with autogenous bone grafting, such as the ribs and

![Figure 1: Case 1 with an edentulous ridge demonstrating labial and buccal bone resorption.](image1)

![Figure 2: Case 2 with an edentulous ridge demonstrating labial and buccal bone resorption.](image2)

![Figure 3: Case 1 pre-surgical radiograph.](image3)

![Figure 4: Case 2 pre-surgical radiograph.](image4)
iliac crest, sometimes in conjunction with a barrier membrane, a risk of dehiscence and infections of the mucosa may interfere with the graft. Furthermore, a two-stage approach to implant placement is generally advocated, lengthening treatment time and increasing cost. In 1992, Simion et al. introduced a split-crest-bone manipulation technique. The purpose of this technique was to create self-space making defects by splitting the atrophic crests into two parts with a longitudinal green-stick fracture and placing the implant between them, which is also an effective technique for severely thin alveolar bone. This is advocated when a standard osteotomy technique in which a crest width of 4 mm is not readily available. In the cases reported in this article, we utilized spe-
Figures 9 a & b: Bone expanders being used for Case 1.

Figures 10 a, b, c: Bone expanders being used for Case 2.
cific dental implants (Microdent Systems, Barcelona, Spain) due to the fact that they are tapered in shape and tapped into position similar in fashion to the driving of a wedge. The present study reports two cases of severe mandibular alveolar atrophy during placement of an immediate taper-shaped implant associated with a ridge widening procedure using non traumatic expanders.

CASE PRESENTATIONS
A 66 year old Egyptian female and a 62 year old Egyptian male were referred for prosthetic treatment associated with implant placement. Clinical examination showed an edentulous margin with obvious labial and buccal bone resorption (Figs. 1, 2). The radiographic appearance indicated an adequate bone height for implant placement, except that the view of the anterior mandible region revealed knife-edge morphology. For the purpose of placing the implant with a conical abutment that assists fixed bridge support, four dental implants were
planned to be placed in the anterior segments of the mandible and premolar areas (Figs. 3, 4).

METHODS
After appropriate anesthesia, an incision was made on the crest of the ridge of the bilateral premolar regions slightly toward the lingual aspect while mesial and distal vertical incisions were extended in the buccal direction for the purpose of flap relief (Figs. 5, 6). Using a periosteal elevator, mucoperiosteal flaps were buccally elevated sufficiently to visualize alveolar ridge anatomy. The bone crests revealed that the ridge widths were approximately 1.6 mm in horizontal width and the buccal aspect had a concave form. Piezoelectric surgery was used carefully to create a channel along the crest of the bone (Figs. 7, 8). By using the piezoelectric surgery tips, the channels were extended to a depth of 8 to 10 mm to reduce the occurrence of cortical plate fracture in the subsequent procedures. After cortical plate separation, the first bone expander was inserted.
to its full length. The expander left in place for 30 seconds for bone remodeling then the expander was removed and the second bone expander was inserted in the bone to the length of 14 mm and left in position for 30 seconds then removed, then the third bone expander was inserted to the length of 14 mm and left in position for 30 seconds (Figs. 9-11). After preparing the alveolar ridge for receiving the implant body, immediate placement of dental implants was achieved after removing the expanders to prevent the relapse of bone expansion. Releasing incisions in the periosteum at the base of the flap were made to enhance the elasticity of the flap. Closure was carried out by using vertical mattress sutures (Figs. 12, 13).

Stage 2 surgery was scheduled 3 months after the implantation. Complete healing of the defects had taken place, and the fixtures were covered by regenerated bone. A conical abutment was attached to the implant fixture (Figs. 14, 15). For the final prosthesis, the fixed bridge at first patient and over denture at second patient were seated with no functional disorders were observed during five months of follow-up (Figs. 16, 17).

DISCUSSION
Alveolar atrophy may present an anatomical limitation to the placement of endosseous implants. Many osseous augmentation techniques, including bone grafting, use of membranes for guided tissue regeneration and ridge splitting procedures have been used in the treatment of this problem. The following are the benefits of ridge splitting procedures compared with other methods: 1) the ridge splitting procedures avoid donor-site morbidity caused by autogenous bone harvesting; 2) the ridge splitting procedures often allows for simultaneous implant placement which significantly shortens the treatment time.

The split-crest technique applied in the present case showed that a preoperative ridge width between 1.5 mm and 3.0 mm had a postoperative ridge width gain between 1 mm and 4 mm after a healing period of six months. Most ridge splitting procedures associated with immediate implant placement have used expanded polytetrafluoroethylene (ePTFE) membranes or poly-gelatin 910 mesh for guided
tissue regeneration. Although the possible benefits of guided tissue regeneration have received considerable attention in previous studies, the use of a membrane increases the risk of complications, such as infections, painful inflamed tissues, and disrupted wound healing. As such, no membrane was used in our cases. In addition, various studies have reported complication rates of 20% to 50% when using membranes.

In ridge splitting procedures associated with immediate implant placement, primary wound closure is generally more difficult compared with that of a standard implant placement and the risk of membrane exposure increases because the natural crest is dramatically augmented. For these reasons, we treated five atrophy cases, including the present ones, without the membrane technique. Subsequent wound healing and osseointegration of the implants were uneventful. Furthermore, the reason for successful regeneration surrounding the implant without the membrane technique may be attributed to the small size and tapered shape of the expanders, which is a beneficial shape to gradually widen a split crest. Only a small percentage of fusiform defects are made by the splitting process. In a small percentage of defect cases, the membrane is not essential for bone regeneration.

Disclosure
The authors report no conflicts of interest with anything mentioned in this article.

References
A world of dental educators

DENTALXP.COM

DentalXP is the fastest growing online dental education website.

FREE SUBSCRIPTION

JOIN TODAY ➤

Be part of the # 1 website on Google Search for online dental education.

Upgrade Today!

Promotional Coupon Code
JIACD510

$100 OFF

Use coupon above to upgrade your account to premium.

Over 80,000 video views per month
Check our Videos ➤

Unlimited downloads of articles and publications.
Search for Articles ➤

Over 10 thousand visitors visit our dental forum per month.
Visit our Forum ➤

In-house live dental courses .
Hands-on Training ➤

Earn CE credits online.
Take Courses Online ➤

Direct contact with world wide opinion leaders.
Know our Xperts ➤
Advancing the science of dental implant treatment

The aim at Neoss has always been to provide an implant solution for dental professionals enabling treatment in the most safe, reliable and successful manner for their patients.

The Neoss Esthetilne Solution is the first to provide seamless restorative integration all the way through from implant placement to final crown restoration. The natural profile developed during healing is matched perfectly in permanent restorative components; Titanium and Zirconia prepapble abutments, custom abutments and copings and CAD-CAM solutions.

Neoss Inc., 21860 Burbank Blvd. #190, Woodland Hills, CA 91367 Ph. 866-626-3677 www.neoss.com
Substance Abuse & Misuse of Prescription Drugs for Temporomandibular Disorders

Paul J. Flaer, DDS, EdD, MPH1 • Jai Parkash, PhD2
Saif Algarugly, DDS3 • Seng Kyu Choi, DMD4

Abstract

Background: Prescription drugs in the United States are often subject to abuse or misuse. **Opioids** are the most abused and misused analgesics of the narcotic drugs. The article deals with abuse and misuse problems associated with other groups of prescription drugs that are used in temporomandibular joint (TMJ) therapy, i.e., tranquilizers, muscle relaxants, and antidepressants. Therapy for Temporomandibular Disorder (TMD) often employs these drugs on an acute or chronic basis.

Methods: Flow charts are given that diagrammatically depict pharmacological therapy for chronic pain and dysfunction in dentistry. Structural representations of prescribed medications for pain are provided. Prescription drug therapy in the treatment of TMJ/TMD is diagrammed.

Results: Figure 1 provides a summary of drugs used in pain management as they relate to substance abuse/misuse in dentistry. Figure 2 summarizes prescriptions used in the treatment of the pain and dysfunction found in TMJ/TMD. Acute drug therapy centers on the **benzodiazepines** and **cyclobenzaprine** for their peripheral antispasmodic/anticonvulsant actions and their relaxant effects on skeletal muscle. As to chronic therapy, the primary drugs employed are the **antidepressants** (e.g., *amytryptiline*) that are active in control of long-term pain. Infrequently, in chronic TMJ/TMD cases with severe or persistent pain, the **opioids** or other narcotic agents are employed on a continuing basis for ongoing therapy.

Conclusions: Besides control of the abuse of narcotics, another controversial area in dental prescribing is the abuse or misuse of drugs used in the treatment of TMJ/TMD. Drugs used in the treatment of TMJ/TMD may be abused or misused by the patient who is depressed, anxious, or experiencing withdrawal symptoms from narcotics addiction.

KEY WORDS: Orthodontics, periodontics, osteopenia, bone graft

1. Diagnosis Section and Faculty, Florida Institute for Advanced Dental Education, Miami, Florida, USA
2. Biomedical Science Faculty, Keiser University, Ft. Myers, Florida, USA
3. Dental Resident, Florida Institute for Advanced Dental Education, Miami, Florida, USA
4. Dental Resident, Florida Institute for Advanced Dental Education, Miami, Florida, USA
INTRODUCTION
Substance abuse and misuse may occur when drugs are prescribed for medicinal use but instead are used for purposes of intoxication. In dental treatment, these untoward negative states are often associated with pain management employing opioids. Substance abuse and misuse with opioids in the management of dental/oral pain has been extensively studied elsewhere in the literature.

Drugs of dental origin that may be abused (for their intoxicating effects) or misused (changed dosages or transferred to another person) are usually medications intended for the treatment of acute or chronic pain. However, this article focuses on “the other substance abuse problem” in dental prescribing, i.e., tranquilizers, muscle relaxants, and antidepressants that are abused or misused for their nontherapeutic psychotropic and intoxicating effects.

DRUG TRANSFERENCE
It is a socialization phenomena and often customary practice in some subcultures in America (e.g., the aging “baby boomers” generation) to share one’s prescription drugs with others. The rationale is that humanistic feelings are set in motion in the patient to “help your fellow man” who is suffering from an ailment (i.e., pain, anxiety, or depression) that one believes can be helped by transferring prescription medication. Prescription drugs from the dental encounter may be transferred to another person or even sold on the “street”. The transference of any medication to a person to which it was not prescribed is illegal according to State and Federal law. These “pill popping” adults may not consider themselves substance abusers, however, because all that is different from abusing prescription drugs and street-illegal abuse is the source of the drug being a pharmacy. Abusers often rationalize erroneously that prescription drugs are screened by the Food and Drug Administration (FDA) and therefore are “safe” to abuse or misuse.

PAIN CONTROL
Drug abusers get prescriptions for painkillers from dental practitioners in private offices, clinics, “urgent care”, or hospital emergency rooms. Sometimes, all it takes is a simple call to the dentist to obtain a prescription pain medication (i.e., telephone authorization). Opioid substance abuse and misuse in dental practice centers around prescription of the drugs oxycodone or hydrocodone due to their activity in chronic pain management (Figure 1). Oxycodone (OxyContin) is a highly addictive drug—exhibiting both marked tolerance and physical dependence. Percodan and Percocet (both widely used post-operatively in dentistry), with lower doses of oxycodone than OxyContin, similarly have addiction, abuse, and misuse potentials. Oxycodone is the most abused and misused prescription medication in dentistry and medicine; thereby it is a notorious major “street” narcotic.

Hydrocodone is generally available in combination products (Vicodin/acetaminophen or Vicoprofen/ ibuprofen) and has a relatively lower addiction potential than oxycodone. However, hydrocodone products will change classification in October, 2014 from DEA Schedule III to Schedule II controlled substance. This DEA Schedule change will reflect increased federal control over the drug and provide a more

42 • Vol. 6, No. 9 • December 2014
accurate representation of the elevated abuse, misuse, and addictive qualities of hydrocodone.

Other narcotic substances that are commonly abused or misused in the dental prescription process include the following drugs: Demerol (meperidine) is a synthetic opioid used largely with codeine intolerance (i.e., mostly gastrointestinal-based problems) or in opioid allergies. Codeine (an opioid) at one time was almost the only analgesic drug used in dentistry for mild to moderate post-operative pain control, but usage for analgesia has been eclipsed in recent years by oxycodone and hydrocodone combination products.

Talwin (pentazocine) although it is a narcotic antagonist, countering the effects of the opioids, it is widely abused in prisons for its hallucinogenic and intoxicating properties.

Are doctors or are patients in control of the process of prescribing drugs (i.e., or not prescribing them at all)? Doctors must consider substance abuse, misuse, and addiction potential before writing prescriptions. Patients are urged by many advertisements in the media from the pharmaceutical companies to “ask their doctors” for certain medications, some with dangerous psychoactive properties--largely analgesics, antidepressants, or anxiolytics. In addition, doctors are pressured into prescribing certain drugs by pharmaceutical company representatives who often come to their offices--leaving ample samples of the drug companies’ medicines, product promotion brochures, and sometimes providing other perks (including some that are unethical).

MUSCLE RELAXANTS

Benzodiazepines are prescribed in dentistry for their muscle relaxation, sedation, sleep-induction, and sometimes anti-convulsive properties (Figure 2). The most commonly prescribed benzodiazepines are diazepam (Valium), clonazepam (Klonopin), lorazepam (Ativan), chlordiazepoxide (Librium), alprazolam (Xanax), and flurazepam (Dalmene). The most well-known of this group is Valium and its generic form diazepam. Diazepam found its way to the “streets” years ago with widespread abuse, misuse, and with chronic use, the development of tolerance and especially dependence. However, overdose levels and the maximum daily dose of diazepam are quite large and not always toxic at approximately 2000 mg. (the recommended daily dose is 40 mg.) making the drug quite safe with a high therapeutic index. The acute danger of overdose usually lies in combining diazepam with other centrally-acting drugs--most often alcohol. Diazepam is used as a parenterally-administered drug for inducing sedation and general anesthesia during oral surgery procedures. In the treatment of TMJ/TMD, diazepam is used largely for its acute effects in skeletal muscle relaxation and as an anti-spasmodic agent.

ANTIDEPRESSANTS

Tricyclic antidepressants, especially amitriptyline (generic for Elavil) are used for chronic pain management in the treatment of TMJ/TMD and furthermore appear to function in analgesia in the absence or presence of depression. However, tricyclic antidepressants prescribed in the treatment of TMJ/TMD may be misused by the patient who is merely “feeling down”
or during withdrawal from existing narcotic abuse. Nonetheless, these drugs are generally not therapeutic with initial doses but require continuing regimens of dosing to achieve their effects. A depressed person may seek to obtain antidepressants by transference from someone under TMJ/TMD treatment. The person obtaining these medications may do so in an attempt to circumvent or “avoid the stigma” associated with mental health treatment.

Prescription Flexeril (cyclobenzaprine) is employed in TMJ/TMD therapy as a muscle relaxant and peripheral anti-spasmodic associated with acute skeletal muscular pain. Cyclobenzaprine is related structurally and pharmacologically to the antidepressants but is often considered on par with the benzodiazepines for its muscle relaxation effects. Nonetheless, Flexeril is a common drug of “street abuse”--known for its intoxicating and drug potentiating effects when used in combination with alcohol, barbiturates, or other CNS depressants.

Figure 1: Prescription analgesia in dentistry – Chronic pain management and substance abuse/misuse.
Figure 2: Drug therapy in the TMJ/TMD patient – antidepressants, tranquilizers, and muscle relaxants.
DISCUSSION

In the United States, both lay and governmental organizations have focused their anti-drug efforts on the control of “street drugs”, particularly opioids. In recent years, the problem of abuse and misuse of prescription pain medications has been addressed by the health community, local and national law enforcement agencies, educational organizations, and by the media. Other dental prescription drugs not used in pain control, some with psychoactive and intoxicating properties, can be highly addictive and damaging to both the physical and mental health. Regulating governments and the health industry have allowed practitioners to prescribe benzodiazepines and other non-pain controlling drugs with psychoactive properties seemingly at will. Regulating and media sources have rarely focused on prescription practices leading to the abuse or intentional misuse of these drugs.

Flow charts (Figures 1 & 2) are provided in this article to aid in understanding the structural relationships of prescription medicines in dental therapy. The darker arrows on the diagrams construct a frequency map for drug action. The schema of Flow chart 1 (Figure 1) provides a summary of drugs used in pain management as they relate to substance abuse and misuse in dentistry. The focus of this Flow chart is on prescription narcotics—especially the opioids. The schema of Flow chart 2 (Figure 2) summarizes prescriptions used in the treatment of the pain and dysfunction found in TMJ/TMD. Acute drug therapy centers on the benzodiazepines and cyclobenzaprine for their peripheral antispasmodic/anticonvulsant activity and their relaxant effects on skeletal muscle. As to chronic therapy, the primary drugs employed are the antidepressants—especially those that are active in control of long-term pain (tricyclic antidepressants, usually amytriptiline). The benzodiazepines (especially, diazepam) and cyclobenzaprine (Flexeril) are sometimes employed in chronic TMJ/TMD therapy. However, these drugs are prescribed primarily with acute symptomology. Infrequently, though, in chronic TMJ/TMD cases with severe or persistent pain, opioids or other narcotic agents are used on a continuing basis in ongoing therapy.

CONCLUSIONS

Clinical studies of the abuse, misuse, and addiction to prescription drugs of dental origin have focused primarily on the pain-killing opioids—particularly oxycodone and hydrocodone. However, other psychoactive and intoxicating drugs having health concerns and addictive properties are prescribed in dental therapy. These drug groups are the tricyclic antidepressants (especially amitryptiline), the anti-anxiety/muscle relaxant agents (benzodiazepines), and the skeletal muscle relaxant cyclobenzaprine. Tricyclic antidepressants are often used in the treatment of chronic pain in TMJ/TMD—with their antidepressant and sedative actions providing a pharmacologic plus to therapy. Benzodiazepines are used in acute and chronic TMJ/TMD therapy mostly for their muscle relaxant, sedative, anti-spasmodic properties, and for their positive effects on countering stress. However, the misuse of benzodiazepines in depressive illnesses may only deepen and extend the depression as the patient falls into a morass of drug overuse and social isolation. Nevertheless, they are virtually overlooked by governmental regulators, the media, and by educational...
organizations. The wide abuse and misuse of benzodiazepines is downplayed by society and in our culture—even calling them “mother’s little helpers” in a popular song. These drugs can be harmful and sometimes devastating to the mental and physical health of abusing, misusing, or addicted individuals. However, the pharmaceutical industry or practitioners rarely warn the public of the side effects or addiction potential of these drug products.

Disclosure
The authors report no conflicts of interest with anything mentioned in this article.

References
ADVERTISE WITH JIACD TODAY!

Reach more customers with the dental profession’s first truly interactive paperless journal!

Using revolutionary online technology, JIACD provides its readers with an experience that is simply not available with traditional hard copy paper journals.

WWW.JIACD.COM